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The Falkner-Skan equation, which is the similarity form of the boundary layer equations, 
has been solved through the use of pseudo-spectral methods for different values of the 
similarity parameter 8. The equation was then parametrically differentiated with respect to p 
and the resulting equation was solved with pseudo-spectral methods. A convergence criteria is 
established for each method. Comparisons are made between both approaches and the 
classical solutions. 

INTRODUCTION 

The Falkner-Skan equation 

$+/-$+p [ l- (fi’]=o, f(O)=f’(O)=O, f’(co)= 1 (1) 

was chosen as the equation of interest because of the inherent nonlinearity which it 
exhibits. Additionally, since the solution was well known there was a large body of 
data with which to compare. Also, since the solution is continuous, the pseudo- 
spectral expansion will not exhibit Gibbs phenomena as is the case when discon- 
tinuities (shocks) are present. The equation is derived in Schlicting [ 1 ] and other 
textbooks on boundary layer theory. 

Our interests in pseudo-spectral techniques are due to their potential to provide 
more efficient algorithms for solution of some nonlinear problems in fluid dynamics. 
The essence of pseudo-spectral techniques is that the solution can be represented as a 
series expansion or orthogonal functions. The particular functions chosen to be the 
basis functions depends largely on the properties of the solution one expects but 
functions which are smooth and continuous are generally chosen. 

The method of parametric differentiation is a technique whereby a set of nonlinear 
differential equations is transformed into an equivalent set of linear differential 
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equations coupled with a set of simple quadratures. The method of parametric 
differentiation has been shown to accelerate finite difference algorithms and to 
provide robust design schemes in nonlinear external flow fluid dynamics [2]. 

In this paper we will present a short discussion of the theory of both pseudo- 
spectral methods and of parametric differentiation as well as their application to the 
Falkner-Skan equation. The numerical techniques used will then be presented 
followed by a comparison of the calculations with the classical results. A section on 
conclusions and extensions will then follow. 

SPECTRAL METHODS 

While pseudo-spectral techniques have been in existence for many years, they have 
become increasingly popular over the past fifteen years. The motivating idea behind 
pseudo-spectral methods is the expansion of an unknown function in a series of 
orthogonal functions 4 for which the strength of each term can be found. While the 
functions can be chosen arbitrarily, the choice can be important. The form of the 
expansion is: y(x) = CzzO A,@,(x). In the Galerkin approximation, for example, one 
chooses the functions so that the boundary conditions are satisfied identically. In a 
collocation pseudo-spectral expansion the error at selected points is formally set 
equal to zero. The third type of approximation, the tau approximation, truncates the 
series after N terms giving N equations for N coefficients. This leads to a situation 
where, if there are M boundary conditions, the last M of the N equations are replaced 
by the boundary conditions. 

A major drawback, however, has been the strong sensitivity which pseudo-spectral 
methods have exhibited with respect to boundary conditions [3,4]. If extraneous or 
slightly incorrect conditions are imposed on the problem the solution may not 
converge or convergence may be to an incorrect solution. 

PARAMETRIC DIFFERENTIATION 

The method of parametric differentiation (MPD) [5] involves differentiating the 
governing equation and the boundary and/or initial conditions with respect to a 
parameter which may or may not appear explicitly in the formulation of the problem. 
The utility in this method is that nonlinear differential equations are transformed into 
linear equations with variable coefficients and the nonlinearity is transferred to the 
parameter integration. 

The procedure is as follows [6,7]: consider a set of possibly nonlinear equations 

Li($,, q4 3 43 Y-.-T 4,) = 0, i = 1, 2,..., m (2) 

with the boundary conditions: 

at xi=xi*, M,(h 7 $2363 9*.-T 4,) = 0, i = 1, 2,. .., 1, (3) 
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where the Li may be a general integro-differential operator and the $i are general 
functions of both the coordinates xi and the parameter family 1. Assume that this set 
of equations has a known solution for some value of 1 say Iz,. That is, #j = #g(x, 1,). 
If (2) is now differentiated with respect to ;1 the resulting equation is 

Li(@P, 3 @*7 @3 7.*.3 @n> = OY i = I, 2 ,..., m, 

where L is a linear operator which operates on the Qj and 

(4) 

@.=S 
J 

an ’ 
j = 1, 2 ,..., k. (5) 

The boundary equations (3) are also differentiated to give 

at xi=xi*, fii(@l 3 @* 3 @j )***3 @,) = O, i = 1, 2 ,..., n. (6) 

The original #j can be recovered by noting that 

(7) 

The nonlinearity of the problem, therefore has been isolated into an integral which 
can be evaluated numerically. 

By using MPD on the Falker-Skan equation (1) with the parameter taken to be /I 
one has [2]: 

where 

g”’ +fg” +f”g - 2&g’ =p - 1, 

g(0) = g’(0) = 0; g’(a) = 0, 
(8) 

k!(v) = $ (9) 

Consequently, the equations to be solved are (1) and (8). The numerical method 
used to solve them is the subject of the next section. 

NUMERICS 

For the numerical solution of the Falkner-Skan equation the basis function chosen 
was of the form 0 = {cos nx}. However, it is not possible to use this basis function for 
fdirectly in terms of q since the boundary condition at infinity precludes any hope of 
a solution. Therefore, the infinite domain must be transformed into a region which is 
finite. A transformation which was found to be successful was: q = tan 8. The 
pseudo-spectral expansion was carried out in terms of 8. With this transformation the 
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boundary conditions are imposed at 8 = 0 and at 0 = n/2 - E. Where E = 0.165 was 
chosen that infinity was approximately 6 which is sufficiently far from the origin so 
that u/U= 1. The boundary conditions were handled with a tau approximation except 
that the first and last equations (those for 0= 0, 742 - E) were replaced by the 
appropriate boundary conditions. When Eq. (1) is evaluated at every point as 
required by collocation a nonlinear system of equation in terms of the An’s results. 
The An’s were found by using a packaged subroutine from the MIT Numerical 
Algorithms Group (NAG) library. While not the most efficient way to solve the 
problem, the actual programming was greatly simplified. The first (n - 2) collocation 
points were spaced as coss’(--rrnx/N) and the remaining points were fixed at 0 and 6. 

The solution of the MPDed Falkner-Skan equation proceded in much the same 
way. In this case g was expanded in a cosine series. The base solution forfwas taken 
to be the pseudo-spectral solution to the Blasius equation, i.e., the Falkner-Skan 
equation with /? = 0. The value for the base solution in g was found from the MPDed 
representation, again with /3 taken to be zero. New values for f were found by using 
Euler’s method with A/3= 0.05. Expressions for the derivatives of f were found 
assuming that f could be expanded in a cosine series and working backward to find 
the coefficients. That is, expressing f at n + 1 nodes, we may write 

(10) 

Therefore, one can find f, f ‘, f “, and f “’ so that the coefficients of the MPDed 
Falkner-Skan equation are determined. The NAG routine was then used to find the 
coefftcients in the expansion for g. The process is then repeated until the value of /3,,, 
is acheived. The results for this procedure are presented in the following section. 

TABLE I 

CPU Time 

Pseudo- 
spectral 

P 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Time 
(set) 2 42 103 209 331 408 581 672 985 1142 1356 

Pseudo-spectral/MPD 

P 0.05 0.1 0.15 0.20 0.25 0.30 

Total time for all cases (set) 1539 



SOLUTIONS OF THE FALKNER-SKAN EQUATIONS 381 

RESULTS 

All calculations were performed on an IBM 370/168 operating under VM/CMS. 
CPU times varied from a few seconds to several minutes as indicated in Table I. No 
firm convergence criteria was established for the pseudo-spectral code because one is 
solving for the coefficients in the expansion. These coefficients are in turn multiplied 
by a number which is less than or equal to one in absolute value and then added 
together. Therefore, the convergence criteria does not determine an error bound on 
the series expansion but rather it establishes an error bound only on the coefficients 
of the expansion. The convergence criteria for the pseudo-spectral/MPD case is 
necessary to allow the computation to proceed to another value of the parameter/?. 

TABLE II 

Coefficients off 

=-.I (3 = 0.0 % -0.1 fi = 0.2 
A(O) I 2.7831891160+04 2.58049430+04 2.6642054310+04 2.6452738350+04 
A(l) i-4.643907693D+04 -4.31970330+04 
A(2) 1 2.363224216D+04 2.23904890+04 
A(3) 1 1.5386532570+03 5.98772690+02 
A(4) I-1:879808560D+04 -1.6422506D+04 
A(5) 1 2.425164573D+O4 2.1535237D+O4 
A(6) I-2.0578961930+04 -1.8358534D+04 
A(7) 1 1.3203012970+04 l.l870459D+04 
A(8) I-6.755626205D+03 -6.0420801D+03 
A(9) 1 2.706078482D+O3 2.42189880+03 
A(lO) l-8.3346155560+02 -7.4675552D+O2 
A(111 1 1.872021122D+02 1.68071820+02 
A(121 I-2.7497438710+01 -2.47773830+01 
A (13) I 1.9953865770+00 1.80883770+00 

-4.4950266650+04 -4.4714647280+04 
2.430188320D+04 2.4410918V40+04 

-1.377802848D+O3 -1.840703486D+03 
-1.460286891D+04 -1.3945932830+04 

2.008935747D+04 1.9448018960+04 
-1.7382646890+04 -1.6900025830+04 

1.1318158630+04 1.1028906510+04 
-5.7841687580+03 -5.6455972340+03 

2.3248576430+03 2.2725609830+03 
-7.1841496970+02 -7.0337485180+02 

1.6203690850+02 1.589368527D+O2 
-2.3944626630+01 -2.353803394D+Ol 

1.7531845490+00 1.727904172D+OO 

- 0. = 0. .R * 0. R - 0. 
A(O) 1 2.7173717100+04 2.7930795220+04 2.9125503570+04 2.9948288020+04 
A(l) l-4.6301766330+04 -4.7677930010+04 -4.997832936D+04 -5.1558481210+04 
A (2) 2.5979746880+04 2.7338569230+04 2.ij8640536D+O4 3.078280368D+O4 
A (3) -3.4116881330+03 -4.5728274330+03 -6.2468960150+03 -7.3761308490+03 
A (4) -1.2535217640+04 -l.l63353699D+O4 -1.038969299D+04 -9.5613609650+03 
A (5) 1.8347101230+04 1.772407142D+04 1.689448780D+04 1.6349462200+04 
A (6) -1.6166602870+04 -1.579109417D+04 -1.530143158D+04 -1.4984034450+04 
A (7) l.O61772996D+Ol, 1.0424266720+04 l.O17260769D+04 1.001162340D+04 
A (8) -5.4548206560+03 -5.3715718560+03 -5.261133354D+03 -5.191428001D+O3 
A (9) 2.2010056330+03 2.17196656OD+O3 2.131612213D+O3 2.1065209540+03 
A(lO) -6.8244337270+02 -6.745754260D+O2 -6.6272638480+02 -6.5549949800+02 
A(ll) 1.5443604720+02 1.5288893550+02 1.502473257D+O2 1.4868038270+02 
A(121 -2.2VOl689030+01 -2.2706806660+01 -2.230521932D+Ol -2.2076825210+01 
A (13) 1.6831557710+00 1.6715278020+00 1.6399140lOD+OO 1.6230101900+00 

- 0. R = 0. = 0. 6 = 1.0 
A(O) 1 3.0395476690+04 3.1412307680+04 3.254792463D+04 3.3177798920+04 
A(l) I-5.2422671940+04 -5.4347039670+04 -5.650867206D+O4 -5.7707710440+04 
A(2) I 3.1559129820+04 3.3189291830+04 3.505140825D+O4 3.6084695790+04 
A(3) I-8.0170527590+03 -9.2524169220+03 -l.O70083175D+O4 -1.1505471150+04 
A(4) I-9.0827348060+03 -8.2464096640+03 -7.233355956D+O3 -6.6691118360+03 
A(5) I 1.603181441D+‘J4 1.5527099340+04 1.4893825550+04 1.4539350770+04 
A(6) I-1.480015800D+04 -1.4529567130+04 -1.417871575D+04 -1.3980668670+04 
A(7) 1 9.9206806770+03 9.7925512440+03 9.622232779D+03 9.5248386490+03 
A(8) l-5.1539382640+03 -5.1008923260+03 -5.029576947D+O3 -4.9880321390+03 
A(9) 1 2.0940537570+03 2.075193417D+O3 2.050006443D+O3 2.0349616710+03 
A(101 I-6.5230999760+02 -6.4673209530+02 -6.3947916610+02 -6.3500617740+02 
A (11) ( I .480989085D+02 l.l,68044129D+O2 1.4519504810+02 1.4416349760+02 
A(121 I-2.201129616D+Ol -2.1801139110+01 -2.155435VO20+01 -2.1389058220+01 
A(l3) I 1.619765136D+OO 1.601855267D+OO 1.5820505150+00 1.568134920[3+00 
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TABLE III 

Coefficients of g 

A (0) 
A (1) 
A (2) 
A (3) 
A (4) 
A (5) 
A (6) 
A (7) 
A (8) 
A (9) 
A (10) 
A(11) 
A (12) 
A (13) 

O.l5238996D+O6 

6 - 0.0 

-O.lllO55390+06 
0.613596810+05 

-0.84263774D+O5 

-0.20085gg20+05 
-0.410958080+04 

0.122350310+05 
-0.108059520+05 

0.643424240+04 
-0.285007660+04 

0.94468153D+O3 
-0.224937970+03 

0.347055710+02 
-0.26297027D+Ol 

O.g861031lD+O5 

6 - 0.05,0.10,0.15 

-0.76269815D+O5 
0.486031960+05 

-0.24234996D+o5 

-0.53611007D+O5 

O.E0467466D+O4 
-0.227692360+03 
-0.19508993[1+04 

O.l6248978D+04 
-0.819552970+03 

O.Z8988068D+O3 
-0.71579023D+02 

0.112907560+02 
-0.869064190+00 

O.l7578746D+OS 
-0.5874504OD+O5 

0.35712703D+05 

- 0.2 

-O.l5906053D+O5 
0.335441370+04 

-0.424393970+05 

-0.20529487D+04 
-0.28930523D+04 

0.194890450+04 
-0.90944529D+03 

0.3091037lD+O3 
-0.74513974D+O2 

O.l1567831D+02 
-0.880350750+00 

-0.524994350+05 
0.49402757D+05 

-0.43529115D+05 
0.34999921D+05 

-0.25og35220+05 
0.157269280+05 

-0.845654820+04 
0.3821532DD+04 

- 0. 
-0.8765503553D+O5 

0.16195009960+06 
-0.1271298690D+06 

0.8355753783D+O5 
-0.4444586331D+O5 

O.l754939209D+O5 
-0.3586681517D+O4 
-0.12773698670+04 

0.17345637820+04 
-0.9850701397D+O3 

0.36835833880+03 
-0.9406959266D+OZ 

0.15190089890+02 
-0.11897840200+01 

The criteria was that the sum of the squares of the residuals of the coefficients had to 
be less than or equal to 0.2. By increasing this number, convergence could be attained 
more rapidly with probably little degradation in the series solution. 

For each case, the initial coefficients were obtained from the previous case. So that 
for p = 0.4 the solution for /I = 0.3 was input as an initial guess. For p = 0.0 the coef- 
ficients were estimated from knowing the solution for a flat plate (Blasius solution). 

The results of the calculations from both the pseudo-spectral and the 
spectral/MPD codes are encouraging. The coefficients for the pseudo-spectral 
expansion are listed in Tables II and III. Note that the coefficients decrease so that 
the higher modes contribute less than the lower modes as one would expect when one 
considers that terms like A, cos 19 and A, cos 19 will define the gross behavior of the 
curve. 

Figures 1 and 2 were obtained from the pseudo-spectral code. Figure 3 was 
obtained from the pseudo-spectral/MPD code and Fig. 4 presents a comparison 
between both calculations. The errors in the MPD code mainly result from the 
parameter integration since it is only first order accurate. If a higher order method, 
e.g., a predictor-corrector method had been used the errors would have been substan- 
tially less. 
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FIG. 1. Pseudo-spectral solution of the Falkner-Skan equation for different values of/?. 

20.0 
P’ 

p=o. 
p=o. 

060 

f’ 
0.40 

FIG. 2. Pseudo-spectral solution of Falkner-Skan equation for different values of/?. 

0.00 0.00 160 2.40 320 400 400 560 640 

FIG. 3. Pseudo-spectral/MPD solution of the Falkner-Skan equation for different values ofa. 
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FIG. 
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000 080 160 240 320 4.00 480 560 640 

rl 
4. Comparison between pseudo-spectral and pseudo-spectral/MPD results, 

CONCLUSIONS 

From studying Table I and Figs. l-7 we arrive at the following conclusions: 

(a) Pseudo-spectral techniques can be successfully applied not only to linear 
differential equations [8] but also to both differential equations with variable coef- 
ficients and to nonlinear differential equations. 

(b) Comparison of pseudo-spectral technique with the classical values 
presented by Rosenhead shows agreement to within ten percent for /3 = 0 and to 
within two percent for p = 1.0. 

(c) Comparison of results obtained by using pseudo-spectral techniques and 
the method of parametric differentiation with results obtained by pseudo-spectral 
techniques alone show favorable agreement. 

IOZ- 

Rosenhead data 

1 
.O 8 1.6 2.4 3.2 40 4.8 5.6 6.4 

rl 
FIG. 5. Comparison of data from Rosenhead with that from the pseudo-spectral code for /I = 0.0. 
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I  1 1 I  

8 1.6 2.4 3.2 4.0 4.8 5 6 6.4 

77 

FIG. 6. Comparison of data from Rosenhead with that from the pseudo-spectral code for /3 = 0.5. 

While the results reported in this paper clearly establish that pseudo-spectral 
techniques may be successfully applied to nonlinear differential equations, several 
recommendations are offered as a means of enhancing the efficiency of the computer 
codes developed. 

(a) Because of the way coefficients are found, namely, through the use of a 
packaged nonlinear equation solver, the CPU times for the problem under 
consideration are rather large. If the finding of the coefficients had been optimized, 
the CPU times would undoubtedly decrease dramatically. In fact, for complicated 

FIG. 1. Comparison of data from Rosenhead with that from the pseudo-spectral code for /I = 1.0. 
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problems such as incompressible turbulence modeling for free shear flows [9, lo] or 
the transonic small disturbance equation [ 1 l] pseudo-spectral methods have been 
shown to be at least comparable to, if not superior to finite difference methods. In the 
solution of the Falkner-Skan equation the majority of the CPU time appears to have 
been used in the packaged routine to solve for the coefficients. 

(b) A more accurate parameter integration would, undoubtedly, produce 
results which are of comparable accuracy to non-MPDed calculations but with a 
shorter computation time [ 131. 

(c) If solutions are required over a sufficiently large interval of values of the 
parameter of interest, a coupling of the method of parametric differentiation and 
pseudo-spectral methods could be more efficient than using a pseudo-spectral code 
alone. 

(d) Different orthogonal functions, Chebyshev polynomials, for example, could 
be chosen for the expansion. However, since derivatives of the fuction are needed, 
choosing a basis with easily found derivatives would be useful. 
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